DTN Security Features Technical Report

W. Scheirer, M. Chuah

{wjs3, chuah}@cse.lehigh.edu

Department of Computer Science and Engineering

Lehigh University

Abstract

Four major features have been added to the DTN2 code-base: the Bundle Authentication Header (BAH), Payload Security Header (PSH), Confidentiality Header (CH), and the application of security to the Bundle Fragmentation/Reassembly system. Our work is based on the draft-irtf-dtnrg-bundle-security-00 document, dated June 8, 2005, with certain design decisions being made to synchronize with the latest bundle protocol draft draft-irtf-dtnrg-bundle-spec-03.txt, dated July 2005. Thus far, all work has been applied to the Sept. 6, 2005 CVS revision of the DTN2 code, with further work accomplished to integrate into the head of the CVS tree. Three demonstration scenarios have been designed and tested, which highlight the functionality of the BAH, PSH & BAH, and proactive fragmentation features.

1.
Introduction

The Distributed Denial of Service (DDoS) attack is a critical threat to the Internet. Initially, ISPs merely relied on manual detection of DDoS attacks after which offline fine-grain traffic analysis is performed and new filtering rules are installed manually to the routers. Such manual intervention results in poor response time and fails to protect the victim network before severe damages are realized. Much research work has been done recently to allow the ISPs to detect DDoS attacks on the fly and trigger appropriate control actions (i.e. dropping suspicious traffic). In [1], a statistical approach has been proposed for DDoS attack detection and throttling of attack packets on the Internet.

Similarly, protection of the network infrastructure and controlling access to that infrastructure is critically important in delay-tolerant networks, which typically are resource-challenged - but the ability to communicate is highly critical for mission success when being attacked by DDoS traffic. Since delay-tolerant networks suffer from high round-trip times, low data rate links, and frequent partitions, efficiency is an important factor in any proposed security solution. Several proposals have been published on DTN security: [2],[3],[4]. In [2], the author suggests that a DTN user presents its public key to a DTN certificate authority to obtain a signed copy of that public key and a signed set of credentials to authorize the user to use certain services. A DTN user needs to present its signed public key and credentials to a DTN router before it can use the router’s service. The router verifies the signatures and stores the public key and credentials in a cache. The cache has an expiration time. Key distribution and management issues for DTN are still open questions, although the authors in [4] have presented some preliminary ideas.

In our work proposal, we have planned to include 3 major security features, namely (i) the Bundle Authentication Header (BAH), (ii) Payload Security Header (PSH), and (iii) Confidentiality Header (CH) to the DTN2 codebase. We not only have accomplished this but we have also integrated fragmentation support with our security features. Our security implementation is based on the draft-irtf-dtnrg-bundle-security-00 document, dated June 8, 2005, with certain design decisions being made to synchronize with the latest bundle protocol draft available when this work began, dated July 2005 [5]. The September 2004 version of the draft [6] was also consulted to reconcile various release discrepancies between the June 2005 security document, and the July 2005 bundle protocol document. Thus far, all work has been applied to the Sept. 6, 2005 CVS revision of the DTN2 code, with further work accomplished to integrate into the head of the CVS tree. Significant additions to the code have been made to the library source file servlib/bundling/BundleProtocol.cc. With this, ciphersuites have been implemented using OpenSSL v. 0.9.7a. For the BAH, EntireBundleHMAC, HeadofBundleHMAC, HeadOfBundleSig, EntireBundleSig, EntireBundleMAC have been implemented. For the PSH, the EntireBundleHMAC has been implemented. For the CH, blowfish encryption is supported. The current header combinations supported include BAH, PSH, CH, BAH and PSH, BAH and CH.
2.
Technical Approach

Three security headers exist as defined by the Bundle Protocol Specification [5]. The Bundle Authentication Header (BAH) is used to assure the authenticity of the bundle along a single hop from sender to recipient. The Payload Security Header (PSH) is used to assure the authenticity of the bundle from the PSH security source, which creates the PSH, to the PSH security destination, which verifies the PSH authenticator. Finally, the Confidentiality Header (CH) is used to indicate that the bundle payload has been encrypted while en route between the CH source and the CH security destination. Each node will turn on the optional security-related delivery option parameters if it desires certain security features. For example, if a node desires confidentiality, then a CH header must be applied to the bundle. Or, if it desires authentication, a PSH and/or a BAH must be applied and the relevant parts of the bundle - digitally signed or MACed appropriately.

2.1
Header Implementation

[image: image1.png]Fillin the primary.
Bundle header

v

Yes

Filln the A

fragmentation header

Fillinthe CH

No

Yes

Fillinthe PSH

Fillinthe Payload
Header

Y

No

W
N

Fillin the BAH

«

Yes

N
P e —
(blowfsh)

> N
A nserthe tash
From PSH Source

Apply
| EntreBundienmaC

Apply HeadofBundle
HMAC

Rewm)

)r,,l

HeadofBundie™ Y®* | Apply HeadofBundle
siG? siG
No
Yes

Apply EntireBundle
sic

EntireBundle
siG?

Yes
EntireBundle’

P APl EntureBundie
HMAC?

HMAC

EntureBundie
MAC?

‘Apply EntireBundle
MAC

Figure 1. Security Header Processing

The selection of any particular ciphersuite is made in the specified security policy. Security header construction and processing is depicted in Figure 1. On the sending side, the first step is to populate the appropriate header fields (defined by the security policy) during the initial bundle assembly. Once the bundle is in the appropriate final form, the ciphersuite is then applied to the bundle. The result of the ciphersuite computation (either a hash or signature) is then appended to the bundle. This final secure form will be transmitted to the network. On the receiving side, the security headers need not be defined by policy. Instead, they are noted as the bundle is parsed by the usual header routines. The ciphersuite, noted during header parsing, is applied to the bundle (with the same considerations as the sending scenario), and a result is computed. The final stage of the receiving process is to verify the sender’s integrity based on the computed and received hash or signature values of the bundle. If no integrity violations have occurred, the bundle is delivered to upper layer.

[image: image3.wmf]

populate header fields

apply

ciphersuite

append to bundle

Sending

parse header fields

apply

ciphersuite

verify integrity

Receiving

Figure 2. The Protocol Stack

Figure 2 represents a more detailed view of the security header implementation as directly applied to DTN2. On the sending side, when a Bundle Transmitted event is received by the DTN2 daemon, the headers are prepared via the format_headers() function of the BundleProtocol class, made available as part of the main DTN2 library in servlib/BundleProtocol.cc. We have added additional code to this function to format the security headers, and apply the appropriate ciphersuites. Ciphersuites are linked from a separate class added to the DTN2 library. The header format sequence must follow what is depicted in Figure 2, with the CH first, followed by the PSH and BAH. Such ordering is required since BAH relies on information on PSH, CH, and payload. When CH is turned on, the payload is encrypted. Then, the PSH can be computed since the PSH MAC or signature is computed based on the payload and the CH information. Finally, the BAH may be applied if this option is turned on, as it provides integrity over the entire bundle, including all other security headers. Once header formatting is complete, the bundle may be passed to the appropriate convergence layer. Throughout the course of our testing, we only utilized the TCP convergence layer.

On the receiving side, the convergence layer passes data it pulls from the network to the parse_headers() function of the BundleProtocol class. During parsing, headers that are present in the bundle are noted in order. Thus, the BAH, which we calculated last on the sending side, is calculated first by the receiver. Next, the PSH may be calculated, followed finally by the CH, where the bundle payload may be decrypted. After the ciphersuite calculation, if any of the hashes or signatures computed does not match the value extracted from any header, a Security Failure event will be generated by the DTN2 daemon. If the checks pass, then a Bundle Received event will be issued, and the bundle will be processed successfully. As noted earlier, [4] makes recommendations for key management, including trusted certificates. For this implementation, we have chosen a simple shared key scheme, since key management is still an open issue in the specification documents. None of our code is tied to a particular key management scheme, thus, it should be simple to integrate key management in the future.

2.2 Fragmentation

[image: image4.wmf]Bundle Transmitted

BundleProtocol

.cc /

format-headers()

build CH

build PSH

build BAH

TCP Convergence Layer

Bundle

Received

BundleProtocol

.cc

p

arse-headers()

check CH

check PSH

check BAH

TCP Convergence Layer

Figure 3. Headers with Fragmentation Enabled

Fragmentation proved to be the trickiest portion of the security implementation. In our Sept. 6th snapshot of the CVS tree, and the latest stable version of DTN2 as of this writing (2.1.99), proactive fragmentation was not functional. Through debugging, this functionality was eventually restored. Initially, because of a design choice in DTN2, all fragments were assembled into a full bundle at each hop along the path to the destination, and re-fragmented if necessary. The specification [4], recommends the following: “If the original bundle had a PSH, then the fragment that is given a Fragment Offset field value of zero MUST include an exact copy of the PSH that was in the original bundle.” Our first implementation followed this, and only passed along a single PSH (if enabled) with the first fragment. Figure 3 illustrates this.

The reassembly of the original bundle by each intermediate hop proved to be inadequate for the testing scenario we desired. Ultimately, we desired the ability for fragments to follow different paths to the same destination; thus, a second attempt at a secure fragmentation feature was necessary. The proactive fragmentation feature of DTN2 has been modified to simply forward fragments upon receipt, if the destination has not been reached. For increased redundancy, we have chosen to include a copy of the original PSH with each fragment. The new fragmentation implementation does not affect the existing BAH implementation.
2.3 Code Integration

servlib/bundling/Bundle.cc

servlib/bundling/BundleDaemon.cc

servlib/bundling/BundleDaemon.h

servlib/bundling/BundleEvent.h

servlib/bundling/BundleEventHandler.cc

servlib/bundling/BundleEventHandler.h

servlib/bundling/Bundle.h

servlib/bundling/BundleList.cc

servlib/bundling/BundlePayload.cc

servlib/bundling/BundlePayload.h

servlib/bundling/BundleProtocol.cc

servlib/bundling/BundleProtocol.h

servlib/bundling/CipherSuites.cc*

servlib/bundling/CipherSuites.h*

servlib/bundling/FragmentManager.cc

servlib/bundling/FragmentManager.h

servlib/conv_layers/FileConvergenceLayer.cc

servlib/conv_layers/TCPConvergenceLayer.cc

servlib/conv_layers/UDPConvergenceLayer.cc

configure.ac

config.h.in

*denotes new file

Listing 1. Code Portions Modified

What we have seen so far is a high-level overview of the implementation. In this section, more detail regarding the code architecture will be provided. Beginning with Listing 1, we see that the majority of changes occur in the bundling/ portion of the DTN2 library code. Minor changes have been made to the convergence layer files, with security failure handling and bundle payload access changes applied to TCPConvergenceLayer.cc. All of the security code is optionally compiled. During configuration, the --enable-security flag must be present to turn on the security features. When not compiled, the security features do not disrupt any of the existing functionality of DTN2.

In Figure 4, a flowchart representing the Bundle header construction is depicted. Beginning with the call to format_headers(), the standard Bundle headers are applied (primary and fragmentation, if necessary). Constructing the security headers is a two-pass process. This is necessary because the various ciphersuites require information that is not yet available on the first pass. For instance, for the BAH to be complete, it must have access to all of the other headers in a complete form. Thus, we leave holes where computed hashes and signatures will be stored on the first pass, and apply the ciphersuites on the second pass.

[image: image8.wmf]567BB32

CAD5F4D

All other

Headers

Primary

Bundle

Header

Len.

Payload

Segment

Size

Payload

Hash

Size

Toilet Paper

Ciphersuite

ID

Format

flag

Key ID

(optional)

Len.

0

BAH

All other

Headers

Primary

Bundle

Header

Payload

Class

Len.

Payload

AE78F98D

Payload

Segment

Size

Payload

Hash

Size

Toilet Paper

Ciphersuite

ID

Format

flag

Next

Hdr

Key ID

(optional)

Len.

0

PSH

(w/ signed

Hash value)

BAH

Fragment

Header

(offset=9)

Next

Hdr

PSH, confidentiality header and payload class

field deleted from successive fragments

Authent. of

Hdr & payload

segment

Authent. of

Hdr & payload

segment

Fragment

Header

(offset=0)

Authent. of

Hdr & payload

segment

Confid.

Header

Challenges faced in fragmentation scenario:

Figure 4. The Flow of Bundle Header Construction

The receiving flow, depicted in Figure 5, is less complex. Processing begins at the call to parse_headers(). Here, we only need to perform a single pass to parse all of the headers. The critical portions of the code involve the validity checks. If BAH is turned on, the program will check the validity of the received BAH header. Then, it will check if PSH is turned on. If PSH is turned on, fragmentation is not turned on, and this node is the PSH-destination, then PSH header checking is invoked. If both fragmentation and PSH are turned on, then a special function, check_psh(), located in servlib/Fragmentmanager.cc, will be called to check the validity of the PSH once a reassembled bundle is obtained.

[image: image2.png]\

. Event %

Issue Securiy Failure)

Verification
passed?

Yes

Yes
Calaulte HeadofBundle | ¢

/| Hmac

Calculate HeadofBundle
sic

Calculate EntireBundle

sIG <+

siG?

Yes
Calculate EntireBundle

HMAC <

Calculate Entresundle | "%
MAC

MAC?

EntireBundle

EntieBundle
HMAC?

EntireBundle

C

Yes

Parse primary
Bundle header

v

Parse fragmentation
header

Y

BaH?
Calculate EntreBundle
HMAC
No v
Y oves S
/

Parse payload
Header

Issue Security Failure

)

Yes

Verification
passed?

Decrypt payload

Issue Bundle
Received Event

Figure 5. The Flow of Bundle Header Parsing

3.0
Evaluation

We have evaluated our security implementation using a 4-node testbed. Each node in the testbed is a 2.8Ghz P4 system with 512M of memory running our modified version of the DTN2 code. Each node is connected to a network via a 100Mbps Ethernet link. Three test scenarios have been successfully demonstrated. The first scenario demonstrates the functionality of the BAH. The second scenario demonstrates the functionality of the PSH in conjunction with the BAH; more specifically, we show that the PSH-source need not be the data source. The third scenario demonstrates the PSH and BAH functionality combined with proactive fragmentation.
3.1
BAH Scenario
[image: image5.wmf]Security Perimeter

N1

M1

N2

N3

Figure 6. BAH Testbed Configuration
In this setup, two sending nodes - one legitimate, one suspicious, will attempt to send a bundle in a network with the BAH feature enabled. The target destination for both nodes is N3. N2 is an intermediate hop on the network. The malicious node (M1) attempts to send a bundle without the appropriate BAH to the receiving node (N2). When the bundle reaches N2, it fails the security validation check, since M1 does not possess the correct key to generate a valid hash or signature. The legitimate sender (N1) sends a bundle with the appropriate BAH, allowing for successful authentication. N2 will forward the bundle to the destination (N3).

3.2 PSH & BAH Scenario

[image: image6.wmf]N1

N2

N3

N4

PSH-Source

PSH-Destination

Figure 7. PSH & BAH Testbed Configuration
In this setup, N1 sends a bundle to N2, with only the BAH activated. The final destination of the bundle is N4. The link between N2 and N3 may not be secure, so N2 turns on the PSH feature, and becomes the PSH-source. This demonstrates that the original sender need not activate the PSH for the PSH to be used later on in the bundle’s journey through the network. N3 is an intermediate node between the PSH-Source (N2) and the PSH destination (P4). It does not validate the PSH, but passes it along to the next node, which happens to be the destination. The PSH-destination can still be the destination node of the bundle (N4). The BAH is validated at every hop in this scenario.

3.3
Fragmentation Scenario

[image: image7.wmf]N4

N2

N3

N1

source

destination

Figure 8. Fragmentation Testbed Configuration

In this setup, N1 is configured to fragment bundles. Both the BAH and PSH are enabled at N1. N1 sends a bundle of a size that will exceed the fragmentation threshold set in the policy of each node in the network; nodes have different policies – this is configurable. As is shown in Figure 8, fragments may take different routes. In our setup, we are able to selectively disable a particular link at N1 (notice that it is multhomed), forcing a redirection of fragments to the remaining available link. Each fragment has a copy of the PSH from the original bundle. The destination, N4, will re-assemble the original bundle, and validate the PSH as it applies to the entire bundle.

4.
Conclusion

Right now, we have only demonstrated the basic security features. The BAH, PSH, and CH have been implemented successfully into the DTN2 codebase. Further, we have succeeded in integrating the fragmentation feature with bundle security. Evaluation has proceeded via three testing scenarios that demonstrate the core features of the security implementation. In terms of further work on the code itself, our current experience indicates that the DTN2 code runs very slowly even in a 2.8GHz machine. Code optimization needs to be performed to improve DTN2 processing time.

More work is needed on the security protocol as well. For instance, the signaling protocol where a DTN node can send a signed copy of its public key to a DTN router before using its forwarding service, whether such handshake should happen when the same DTN user is forced to communicate with other DTN routers in the same region when it loses contact with that first DTN router or a DTN user can be given a token (with expiration time) that it can attach to its sending bundle to other DTN routers in the same region once it has been authenticated before, how the symmetric keys can be distributed in real-time, etc.

DISTRIBUTION STATEMENT D - Distribution authorized to the Department of Defense and U.S. DoD contractors only (software documentation) (15th, April 2006). Other requests shall be referred to DARPA Technical Information Office.
5.
Bibliography

[1] Y. Kim, W. Lau, M. Chuah, H. Chao, “Packetscore: statistics-based approach against DDoS attacks,” Proceedings of IEEE Infocom, April, 2004

[2]. Robert C. Durst, “An infrastructure security model for delay tolerant networks,” July 2002

[3] A. Seth, S. Keshav, “Practical Security for disconnected nodes,” Proceedings of NPSEC, Nov 2005.

[4] S. Symington etc, “Bundle Security Protocol Specification,” draft-irtf-dtnrg-bundle-security-00.txt, June 2005

[5] K. Scott and S. Burleigh, “Bundle Protocol Specification,” draft-irtf-dtnrg-bundle-spec-03.txt, July 2005

[6] K. Scott and S. Burleigh, “Bundle Protocol Specification,” draft-irtf-dtnrg-bundle-spec-02.txt, September 2004

[7] S. Symington, S. Farrell and H. Weiss, “Bundle Security Protocol Specification,” draft-irtf-dtnrg-bundle-security-01.txt
PAGE
1

